
Thomas Adewumi University Journal of Innovation, Science and Technology, Vol. 1 Issue 2. 2024

Quick Response Code Access this article online

Website:

https://journals.tau.edu.ng/index.php/tau
-jist

DOI: https://doi.org/10.5281/zenodo.16632051

Cite the Article: Ezekiel K. Olatunji, John. B. Oladosu, Stephen O. Olabiyisi & Odetunji A. Odejobi. (2024). Development of a Tokenizer for an Orthographic

 Yorùbá-Based Programming Language to Enhance Indigenous Language Computing

ISSN: 3043-503X

RESEARCH ARTICLE

Thomas Adewumi University

Journal of Innovation,

Science and Technology (TAU-JIST)

DEVELOPMENT OF A TOKENIZER FOR AN ORTHOGRAPHIC YORÙBÁ-
BASED PROGRAMMING LANGUAGE TO ENHANCE INDIGENOUS

LANGUAGE COMPUTING
Ezekiel K. Olatunji1*, John. B. Oladosu2, Stephen O. Olabiyisi2 , & Odetunji A. Odejobi3

1Department of Mathematical and Computing Sciences, Thomas Adewumi University, Oko, Kwara state, Nigeria
2Department of Computer Science and Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
3Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-ife, Nigeria

Corresponding Author Email: ezekiel.olatunji@tau.edu.ng

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

ARTICLE DETAILS ABSTRACT

The Yorùbá language, with its rich orthographic system, is spoken by over 100 million people
worldwide. Despite its widespread use and rich linguistic heritage, the computational resources
available for the Yorùbá language are limited. Current programming languages and tools are
predominantly designed for English or other widely spoken languages, creating a barrier for those
who are only literate in Yorùbá but interested in programming and software development. This
research aims to bridge this gap by developing a robust token recognizer for a Yorùbá-based
programming language that recognizes and supports the language’s modern orthography. The lexical
structure of the Programming Language was specified by defining an appropriate regular grammar
with the BNF notation and standard Yorùbá words used as reserved words. The Programming
Language’s character set consists of the basic Yorùbá alphabet. The tokenizer system was
implemented on Visual Studio IDE using C# programming language. The test data was created using
an online text editor that enables the typing of Yorùbá characters with tonal marks. The developed
Tokenizer can determine the different lexemes that form different tokens of the source program in
the source language. Besides, it recognizes whitespace characters and detects and reports invalid
characters of the source language as well as programmer-directed statements in the source program.
The output produced by the system on some given test data showed its functional correctness. This
initiative is crucial for advancing indigenous language computing, empowering Yorùbá speakers, and
preserving the Yorùbá language through technological innovation. Furthermore, the study has the
potential to contribute to driving the fourth Sustainable Development Goal of the United Nations.

KEYWORDS

BNF, Lexeme, Orthography, Token, Yorùbá Language

Article History:
Received 02 July 2024
Accepted 0 5 October 2 0 2 4

Available online 10 December
2024

INTRODUCTION

 The global dominance of major languages in computing has created

a gap for underrepresented indigenous languages, limiting the

technological participation of speakers from diverse linguistic backgrounds

(Bird, 2020); especially those that are only literate in their native

languages. In response to this, there has been a growing interest in

developing programming languages that accommodate indigenous

languages, particularly in Africa. One such language is Yorùbá, a tonal

and orthographically complex language spoken predominantly in

https://journals.tau.edu.ng/index.php/tau-jist
https://journals.tau.edu.ng/index.php/tau-jist
https://doi.org/10.5281/zenodo.16632051
mailto:aekolatunji@gmail.com

Thomas Adewumi University Journal of Innovation, Science and Technology

Cite the Article: Ezekiel K. Olatunji, John. B. Oladosu, Stephen O. Olabiyisi & Odetunji A. Odejobi. (2024). Development of a Tokenizer for an Orthographic

 Yorùbá-Based Programming Language to Enhance Indigenous Language Computing

southwestern Nigeria and parts of West Africa (Adewumi, et al. 2020). The

development of a programming language that reflects the orthographic and

syntactic structure of Yorùbá has the potential to promote indigenous

language computing, fostering cultural preservation and technological

inclusivity.

 Programming Languages (PLs) are more commonly implemented as

compilers or interpreters (Olatunji, 2014). The first major component or

subsystem of most programming language translators is the tokenizer (also

called a lexical analyzer or scanner). A tokenizer determines the sequence

of characters that form a lexeme in the PL and thereafter classifies them into

their token categories. (Aho et al., 2007; Olatunji 2014). Examples of token

categories are numbers, identifiers, reserved or keywords and so on. A

lexeme is the actual sequence of characters in a source program that can be

grouped together and treated as a single, meaningful unit. For a Yorùbá-

based programming language, a token recognizer must accommodate the

specific linguistic characteristics of the language, including its diacritics,

tonal marks, and phonological structure.

 A token of a PL is the smallest unit in a source program. They are

terminal symbols of a type-2 language in the parlance of formal grammar

from whose theory this study derives its philosophy (Olatunji, et al., 2019).

The output of a Tokenizer is a stream of tokens that is sent to the parser for

further processing during compilation. A parser is another component of a

compiler that carries out syntax analysis on the input sent to it by the

Tokenizer.

The Success of this study will facilitate the development of a full-scale

standard Yorùbá-based PL. Besides enhancing the comprehension of

computer-based problem-solving processes by indigenous learners and

instructors which aims at contributing to the fourth Sustainable

Development Goals (SDG) of the United Nations (UN) (United Nations,

2022), a Yorùbá-based PL will contribute to ensuring the continued

relevance of the Yorùbá language in this age of ICT with its increasing

globalization. In addition, the adoption of native language-based PLs like

Yorùbá will deter their natural extinction as feared in many circles (Nwafor

and Andy, 2022; Olatunji, 2019).

2. REVIEW OF LITERATURE

2.1 The Yorùbá Language

The Yorùbá language is one of the indigenous African languages, and

according to Ager (2020), is a member of the Volta-Niger branch of the

Niger-Congo family of languages. It is spoken by over 100 million people

globally and the first language of over 30 million people in the South-

Western part of Nigeria (Eludiora et al, 2015). Yorùbá is a tonal language

(Kasali et al, 2021), having three different tones: high, low, and mid. Tones

distinguish the meaning of words and are indicated by the use of the acute

accent for high tone (e.g. ⟨á⟩, ⟨ń⟩), the grave accent for low tone (e.g. ⟨à⟩, ⟨ǹ⟩);

the mid tone is unmarked.

There are twenty-five (25) letters in the Yorùbá alphabet. Figure 1

shows the upper and lowercase of the letters.

Figure 1: Yorùbá Alphabet Letters in Upper and Lower Cases.

Three of the Yorùbá alphabets have an under-dot sign. These are

Ę, Ǫ and Ș for the upper case letters and ę, ǫ and ș for the lower case

letters. These letters are also pronounced differently from their

equivalent without the under-dot sign. The tonal signs are usually

placed on the vowels in the alphabet, with the exception of the letter i

(Eludiora and Ajibade, 2021). The vowels in the Yorùbá lower case

letters, in addition to i, are: a, e, ę, o, ǫ and u.

2.2 Related Works

The need to simplify learning and teaching of computer

programming by indigenous people has led to the development of PLs

based on the lexicons of many non-English languages. The

development of a prototype native language-based programming

language (NLPL) that used the lexicons of the Yorùbá language was

carried out by Olatunji et al (2021). A major gap in their work is that

their design did not take cognizance of the modern orthography of the

standard Yorùbá language; particularly the tonal nature of the

language with the necessary tone markings that indicate the correct

ways of spelling and pronouncing words in the language. This present

study seeks to address this gap.

An Arabic-based programming language, called Alf..Eih, was

developed by Abdulrasaq et al. (2019) for teaching computer

programming to pupils and school children in Arabic countries. The PL

was implemented as a source-to-source compiler whose object code is

C++ . The PL was also developed for pedagogical reasons as, according

to the authors of the PL, students will be assisted in comprehending

the idea of programming in their native language rather than when

foreign languages are used.

Annamalai (2013) developed a Tamil-based PL called Ezhil.

Tamil is an Indian language spoken by over 60 million people

(Subramanian, (2015). Ezhil is an interpreted PL which is targeted

towards the K-12 (Junior high school) level Tamil-speaking students

as an early introduction to thinking like a computer scientist. The

syntax of Ezhil is broadly similar to that of conventional BASIC.

The development of the Hindawi programming system (HPS)

that allows users to program in Indic languages (Hindi, Bangla,

Gujarati, Assamese and some other indic languages) was described in

Olatunji, (2019). The HPS, developed by Chaudbary, A and Chaudbary,

S., is a free, open-source, programming platform that allows non-

English medium literates of India to learn and write computer

programs. The system removes the English language barrier and

enables non-English literate Indians to take up computer science and

Aa Bb Dd Ee Ęę Ff Gg GBgb

Hh Ii Jj Kk Ll Mm Nn Oo

Ǫǫ Pp Rr Ss Șș Tt Uu Ww Yy

Thomas Adewumi University Journal of Innovation, Science and Technology

Cite the Article: Ezekiel K. Olatunji, John. B. Oladosu, Stephen O. Olabiyisi & Odetunji A. Odejobi. (2024). Development of a Tokenizer for an Orthographic

 Yorùbá-Based Programming Language to Enhance Indigenous Language Computing

participate in information and communications technology (ICT) at all

levels of technology in their mother tongue. It is noteworthy that most of

these PLs were developed for pedagogical reasons which, in part,

contributes to the fourth SDG of the United Nations (UN). The fourth SDG

aims to ensure equitable quality education and promote lifelong learning

opportunities for all (UN, 2022)

METHODOLOGY

Appropriate regular (type-3) grammars were designed, using the

Backus Norm Form (BNF) notations, to specify the lexical structure of a

subset of the Yorùbá-based PL. Some standard Yorùbá words that will not

lead to ambiguity were used for the design of the lexical items of the PL. The

character set of the PL was formed from the basic Yorùbá alphabets which

are 25 in number. The eighth alphabet (‘gb’) is a special double-character

which does not have a Unicode character equivalent. It is a combination of

two Latin characters. Each alphabet has both the upper and the lowercase

representations. Digits zero to nine and some special characters including

simple commonly used arithmetic and relational operator symbols are part

of the character set of the PL. Figure 2 is a subset of the design of the PL that

is relevant to this study. In Figure 2, words enclosed in corner brackets are

called non-terminals symbols, while those not enclosed in corner brackets

are terminal symbols in the grammar of the lexical items of the PL.

Furthermore, <Nǫmba> is a non-terminal symbol from which integer

numbers can be generated, while <Feriebu> is the non-terminal symbol

from which identifiers in the programming language can be derived.

Definition of < Nǫmba> (Number) and < Feriebu> (Variable)

< Nǫmba>  <Dijiti> [{ <Dijiti> }4]

< Feriebu>  <ABD> [{ <ABD> | <Dijiti>}6]

<Dijiti>  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<ABD> A | B | D | E| Ę | F| G | ‘GB’| H | I | J | K | L | M | N |

O | Ǫ| P| R | S | S | T | U | W | Y |

a | b | d | e | ę | f | g | ‘gb’| h | i | j | k | l | m | n | o | ǫ | p | r | s | ș |

<ABDTona>  á | à | é | è | ẹ́ | ẹ̀ | ó | ò | ọ́ | ọ̀ | ù | ú |

À | Á | É | È | É ̣ | É ̣ | Ó | Ò | Ó ̣ | Ó ̣ | Ú | Ù

Note:

The definition of <Nǫmba> implies it cannot be greater than 99999, while

a

< Feriebu> which is an identifier cannot be more than 7 characters long.

-------------------- ---------------------------- ----------------------------------- ----------

Figure 2: Production Rules for <Nomba> and <Feriebu>

Figure 3 is a pseudo-code developed for the implementation of the

Tokenizer. The system was implemented in C-Sharp (C#) programming

language on Visual Studio IDE. The test data for the system consists of

Yorùbá-based source program statements, each of which consists of strings

of valid characters in the PL. The test data were created through an online

Yorùbá text editor called Lexilogos (Lexilogos.com, n.d). The editor has

facility for typing the special alphabet with tonal marks. Any other Yorùbá

text editor that has this facility can also be used. A simple fictitious test

data used for the system is shown in Figure 4. A peculiar feature of the

system is its ability to recognize the Yorùbá alphabet which does not

have ASCII representation but only UNICODE representations

(Ronacher, 2024).

Figure 3: Pseudo-code for Implementing the Tokenizer

 Figure 4: Sample Test Data for the System

RESULTS AND DISCUSSION

Sample outputs produced for using the source statements in

Figure 4 as test data are shown in Figures 5a, 5b and 5c. Figure 5

contains the different tokens recognized in the source statements of

Figure 4 along with their token categories. The column tagged

‘improper token’ in Figures 5a, 5b and 5c contains correct lexemes in

the PL, though they are not valid tokens of the PL. In Figure 5a, the

word “Ọmọlùábi" is deliberately included as a reserved word in the

design of the PL when the system was being tested.

1. Start

2. Declare all necessary variables

3. Initialize all variables as deemed fit

4. Initialize table of terminal symbols (reserved

words, delimiters, operators)

5. Do While not EOF(End of source program file)

5.1 Read a source statement

5.2 Do Until End of source-statement-read

5.2.1 Scan for first /next non-blank

character

5.2.2 Classify character scanned

5.2.3 Process the classified character

5.3 Enddo

6. Enddo

7. Stop

Thomas Adewumi University Journal of Innovation, Science and Technology

Cite the Article: Ezekiel K. Olatunji, John. B. Oladosu, Stephen O. Olabiyisi & Odetunji A. Odejobi. (2024). Development of a Tokenizer for an Orthographic

 Yorùbá-Based Programming Language to Enhance Indigenous Language Computing

Figure 5a: Output of the Tokenizer for First Source Statement

Figure 5b: Output of the Tokenizer for the Second Source Statement

Figure 5c: Output of the Tokenizer for the Third Source Statement

Examination of Figure 5 shows that the implemented Tokenizer

is working correctly. For instance, in the test data, an exclamatory

mark (!) precedes a comment statement, while a string literal is

enclosed in two single quotes. These are correctly recognized as

shown in Figure 5a for source statement one and Figure 5b for source

statement two respectively. Furthermore, Figure 5b shows that the

character Q in statement 2 of Figure 4 is correctly recognized as being

invalid in the alphabet of the Yorùbá language. The design of the PL

specifies that the length of an identifier must not be greater than seven

(7) characters as shown in Figure 2. This is correctly recognized as

such in Figure 5c for the third source statement of the test data in

Figure 4.

CONCLUSION AND FUTURE WORK

The development of a Tokenizer for a subset of the Yorùbá-

based PL with the lexicons and modern orthography of the standard

Yorùbá language will enhance the full-scale development of a compiler

for the Yorùbá-based PL. Without any controversy, a Yorùbá-based PL,

when fully developed, will provide an indigenous platform for the

introduction of computer programming to indigenous pupils of both

senior primary and junior secondary schools. This research therefore

contributes partly to accomplishing the UN’s fourth SDG. Development

of a suitable parser and semantic analyzer for the Yorùbá-based PL is

the next major work in this research endeavour.

REFERENCES

Abdulrazaq, H.H., Gasera, A.S., Mohammed, M. A., ... Farhana, R.N.

 (2019), Designing and Implementing an Arabic Programming

 Language for Teaching Pupils, Journal of SouthWest Jiaotong

 University, vol. 54, No. 3, June 2019.; DOI:1035741/issn.0258

 2724.54.3.11

Adewumi, T.P., Liwicki, F and Liwicki, M. (2020), The challenge of

Diactirics in Yorùbá Embeddings. In ML4D Workshop at 34th

Conference on Neural Information Processing Systems

(NeurIPS2020), vancour, Canada

Ager, S (2020) The online encyclopedia of writing systems and

languages. [Online].

Thomas Adewumi University Journal of Innovation, Science and Technology

Cite the Article: Ezekiel K. Olatunji, John. B. Oladosu, Stephen O. Olabiyisi & Odetunji A. Odejobi. (2024). Development of a Tokenizer for an Orthographic

 Yorùbá-Based Programming Language to Enhance Indigenous Language Computing

Available:https://www.omniglot.com/writing/ Retrieved

 December 2023

Aho, A. V.; Lam, M. S.;Sethi, R. and Ullam, J.D (2007),Compilers – Principles,

 Techniques and Tools, New York,Pearson Education/ Addison

 Wesley, 2nd ed; pp1040

Annamalia, M. (2013). Invitation to Ezhil: A Tamil Programming Language

 for Early Computer Science Education; Retrieved from

 http://ezhillang.org on 17-03-2015

Bird, S. (2020). Decolonising speech and language technology. In

 Proceedings of the 58th Annual Meeting of the Association for

 Computational Linguistics, 6–15.

Eludiora, S. and Ajibade, B. (2021). Design and implementation of English

 to Yorùbá Verb Phrase Machine Translation System. In Proceeding of

 the Africa NLP Workshop - International Conference European

 Chapter of the Association for Computational Linguistics [EACL 202],

 Ukraine, DOI:10.4855/arXiv.2104.04125

Éludiora, S. I.; Agbeyangi, A.Ó. and Ó.I. Fatusin (2015) ; “Development of

 English to Yorùbá Machine Translation System for Yorùbá verbs’s

 Tone Changing”, International Journal of Computer Applications, vol.

 129, No. 10, 2015

Kasali, A.A., Jimoh, K.O., Adeagbo, M.A. and Bello, S. A., (2021), Web-Based

 Text Editing System for Nigerian Major Languages, Nigerian Journal

 of Technology, Vol. 40, No. 2, 2021, pp. 292–301.

 http://dx.doi.org/10.4314/njt.v40i2.15Lexilogos (n,d), Available

 online from https://www.lexilogos.com/english/index.htm

 Retrieved on 25/07/2023

Nwafor, E. and Andy, Anietie (2022), A survey of Machine TranslationTasks

 on Nigerian languages; in Proceedings of the 13th Conference on

 Language Resources and Evaluation [LREA, 2022], Marsielle

Olatunji, E. K., Oladosu, J. B. and Olabiyisi, S. O. (2022), Towards the

 Development of a Token Recognizer for a Yorùbá-based Programming

 Language; In Proceedings of International Conference on

 Information systems and Emerging Technologies, Nambia

 University of Technology (ICISET), 23-25 November, 2022

Olatunji, E. K., Oladosu, J. B., Odejobi, O. A. and Olabiyisi, S. O. (2021).

 Design and Implementation of an African Native Language

 based Programming Language.International Journal of

 Advances in Applied Sciences (IJAAS), 10(2); 171-177.

 https://doi.org/10.11591/ijaas.v2.i2.pp171-177

Olatunji, E. K. (2019). Development of a Programming Language with

 Yorùbá Lexicons. Unpublished PhD Thesis, Ogbomoso-Nigeria,

 Ladoke Akintola University of Technology.

Olatunji, E. K., Oladosu, J. B., Odejobi, O. A. and Olabiyisi, S. O. (2019).

 Design of an African Native Language-based Programming

 Language. University of Ibadan Journal of Science and Logics in

 ICT Research (UIJSLICTR), 3(1); 72-78

Olatunji, E.K. (2014), “Programming Languages – Introductory Text

on Concepts and Principles”, Igbagbogbemi Publishers, Ilorin,

Nigeria, ISBN 978-187-458-9, pp 8, 2014.

Ronacher, Armin (2024); Information, Characters, Unicode. Available

 online from

 https://cs.fit.edu/~ryan/cse1002/lectures/unicode.pdf

 Retrieved on 15-02-2024

Subramanian, K. (2015), Bridging the Digital Divide with Tamil Coding;

 Retrieved from www.thehindu.com/~/making computing-in-

 tamil-easy/ on 17-3-2015

United Nations(2022), Together 2023 – Position Paper -Sustainable

 Development Goals; Available online from

 https://sustainabledevelopment.un.org/ ; Retrieved on 21-02-

 2024.

https://www.omniglot.com/writing/
http://ezhillang.org/
https://www.lexilogos.com/english/index.htm
https://www.lexilogos.com/english/index.htm
https://doi.org/10.11591/ijaas.v2.i2.pp171-177
https://cs.fit.edu/~ryan/cse1002/lectures/unicode.pdf
https://cs.fit.edu/~ryan/cse1002/lectures/unicode.pdf
http://www.thehindu.com/~/making%20computing-in-%09tamil-easy/%20on%2017-3-2015
http://www.thehindu.com/~/making%20computing-in-%09tamil-easy/%20on%2017-3-2015
https://sustainabledevelopment.un.org/

