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ARTICLE DETAILS ABSTRACT 

. The study addresses the essential role of differential equations (DEs) in modelling physical 
phenomena and acknowledges the challenge posed by the inability to solve many DEs analytically. To 
overcome this, efficient numerical and approximation methods are necessary. The focus is on 
constructing a family of orthogonal polynomials valid in the interval [-1, 1] with a specific weight 
function. The hybrid two-step equally spaced method (HTEPM), employs collocation and 
interpolation techniques. On investigation of the fundamental properties of the method, findings 
reveal that the proposed schemes are consistent, zero-stable, and consequently convergent. Upon 
implementation, the study establishes the numerical superiority of the HTEPM over existing methods 
through rigorous numerical evaluations and comparisons. This suggests that the proposed method 
offers improved performance in solving DEs within the specified context 
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1.0  INTRODUCTION 

Numerical integration techniques play a pivotal role in solving 

differential equations, especially in scenarios where analytical solutions 

are unattainable. This study focuses on the numerical integration of 

third-order initial value problems (IVPs) utilizing an equally spaced 

hybrid method (HTEPM), augmented with orthogonal trial functions via 

collocation and interpolation technique.   

Our main goal is to derive a new class of polynomials that may be used to 

a wide range of situations. Several writers have proposed ways for 

handling initial value problems because they want to improve the accuracy 

and efficiency of numerical approaches ([24] ,[26],[30]). Our goal is to 

create a class of orthogonal polynomials in this work that will be used 

as trial functions to construct numerical methods for a class of initial 

value issues that look like this:  

    𝑦𝑚(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′, … 𝑦𝑚−1)  (1) 

   𝑦𝑟(𝑥0) = 𝑦𝑟  , 𝑟 = 0, 1, … , 𝑘 − 1 

Specifically, we considered the case 𝑚 = 3, 

 

The analytical solution of many of such problems does not exist. Thus, 

the need for formulation of numerical scheme to integrate (1) 

becomes neccesary. 

Recently, there has been a focus on exploring the numerical solution 

of Ordinary Differential Equations (ODEs) (1) for cases where 𝑚 
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equals 1, 2, and 3 using collocation methods, as evidenced by studies 

referenced in [1], [3], [4], [5], and [18]. 

More recently, [8], [9], [14], and [19] have developed various numerical 

methods and explored diverse trial functions, contributing to the ongoing 

advancement of the field 

 

Authors in both references [14] and [21] embraced the self-starting approach, 

employing Chebyshev Polynomials to formulate a series of algorithms. The 

numerical solutions derived through their methodologies are noteworthy, as 

they frequently converge to exact solutions at numerous instances. In what 

follows, we shall construct a set of orthogonal polynomials valid in interval [0, 

1] with respect to weight function 𝑤(𝑥) = 1 +
𝑥

2
 which are serve as trial 

functions to derive a block method that provides direct solution to (1). 

  

2.0   CONSTRUCTION OF ORTHOGONAL BASIS FUNCTIONS 

 Let the function 𝑞𝑛(𝑥) defined as  

 𝑞𝑛(𝑥)   =   ∑𝑛
𝑟=0 𝐶𝑟

(𝑛)
𝑥𝑟

 (2) 

 where 𝐶𝑟
(𝑛)’s are the orthogonal coefficients and 𝑞𝑛(𝑥) satisfies the inner 

product  

 < 𝑞𝑚(𝑥), 𝑞𝑛(𝑥) >  =  ∫
𝑏

𝑎
𝑤(𝑥)𝑞𝑚(𝑥)𝑞𝑛(𝑥)𝑑𝑥 = 0,     𝑚 ≠ 𝑛, [−1,1]

 (3) 

 For the purpose of constructing the basis function, we use additional property 

that  

 𝑞𝑛(1)  =  1            

 (4) 

 For 𝑛 = 0 in (2),  

 𝑞0(𝑥)   =   𝐶0
(0)

  

From (4),  

 𝑞0(1)   =   𝐶0
(0)

 =  1 

Hence,  

 𝑞0(𝑥)   =   1 

For 𝑛 = 1 in (2),  

 𝑞1(𝑥)   =   𝐶0
(1)

  +  𝐶1
(1)

𝑥

 (5) 

 By definition (4), (5) gives  

 𝐶0
(1)

  +  𝐶1
(1)

  =  1     

 (6) 

 and  

 < 𝑞0, 𝑞1 > =  ∫
1

0
(1 +

𝑥

2
) 𝑞0(𝑥)𝑞1(𝑥)𝑑𝑥

 (7) 

 which implies  

 
5

4
𝐶0

(1)
+

2

3
𝐶1

(1)
 =  0 

 (8) 

 Solving (6) and (10) and substituting the outcomes into (5), we have  

 𝑞1(𝑥)   =   
1

7
(15𝑥 − 8)   

 (9) 

 When 𝑛 = 2 in (2),  

  

𝑞2(𝑥) =  𝐶0
(2)

 + 𝐶1
(2)

𝑥  +  𝐶2
(2)

𝑥2    

    (10) 

 By definition (4), (10) gives  

 𝐶0
(2)

 + 𝐶1
(2)

 + 𝐶2
(2)

  =   1

 (11) 

 and  

 < 𝑞0, 𝑞2 > =   ∫
1

0
(1 +

𝑥

2
) 𝑞0(𝑥)𝑞2(𝑥)𝑑𝑥  = 0

 (12) 

 which implies  

 
5

4
𝐶0

(2)
 + 

2

3
𝐶1

(2)
 + 

11

24
𝐶2

(2)
 =  0  

 (13) 

 Also  

 < 𝑞1, 𝑞2 >  =  ∫
1

0
(1 +

𝑥

2
) 𝑞1(𝑥)𝑞2(𝑥)𝑑𝑥  

 (14) 

 which gives  

 
37

168
𝐶1

(2)
  +   

19

84
𝐶2

(2)
  =   0  

 (15) 

 Solving (11), (13), (15) and substituting the resulting values into 

(10), we have  

 𝑞2(𝑥) =
1

57
(370𝑥2 − 380𝑥 + 67)    

 (16) 

 When 𝑛 = 3 in (2),  

 𝑞3(𝑥)  =  𝐶0
(3)

 + 𝐶1
(3)

𝑥  +  𝐶2
(3)

𝑥2 +  𝐶3
(3)

𝑥3

 (17) 

 By definition (4), (17) gives  

 𝐶0
(3)

 + 𝐶1
(3)

 + 𝐶2
(3)

 + 𝐶3
(3)

 =   1   

 (18) 

  

 < 𝑞0, 𝑞3 > =   ∫
1

0
(1 +

𝑥

2
) 𝑞0(𝑥)𝑞3(𝑥)𝑑𝑥  = 0

 (19) 

 which implies  

 
5

4
𝐶0

(3)
 + 

2

3
𝐶1

(3)
 + 

11

24
𝐶2

(3)
 + 

7

20
𝐶3

(3)
 =  0  

 (20) 

  

  < 𝑞1, 𝑞3 >  =   ∫
1

0
(1 +

𝑥

2
) 𝑞1(𝑥)𝑞3(𝑥)𝑑𝑥 = 0

 (21) 

 This leads to  

 
37

168
𝐶1

(3)
 + 

19

84
𝐶2

(3)
 + 

29

140
𝐶3

(3)
 =  0 

 (22) 

  

 < 𝑞2, 𝑞3 >  =   ∫
1

0
(1 +

𝑥

2
) 𝑞2(𝑥)𝑞3(𝑥)𝑑𝑥 = 0 

 (23) 

 Solving (18),(20) and (22) and substituting the resulting values into 

(17), we obtain  

 𝑞3(𝑥)  =  
1

491
(10675𝑥3 − 16290𝑥2 + 6690𝑥 − 584)  

 (24) 

In the same vein, 𝑞𝑛(𝑥), 𝑛 ≥ 4  are developed. The next three 

polynomials which are used in this work are listed hereunder. 
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2.1 FORMULATION OF THE NUMERICAL INTEGRATION  

𝑞4(𝑥)  =  
1

4361
(332766𝑥4  −  674072𝑥3  +  440874𝑥2  − 100428𝑥 + 5221) 

 

𝑞5(𝑥)  =  
1

7899
(2173710𝑥5  −  5489736𝑥4 + 4942812𝑥3  −  1884904𝑥2  +  275513𝑥 − 9496)

𝑞6(𝑥)  =  
1

72509
(73254324𝑥6  −  221626152𝑥5  + 254436138𝑥4  −  137426374𝑥3 +  34913052𝑥2

                                        − 3565896𝑥 + 87419) 

  

 

we review here the work of Adam-Moulton on the derivation of three-step 

implicit method whose discrete scheme is 𝑦𝑛+3 = 𝑦𝑛+2 +
ℎ

24
(𝑓𝑛 − 5𝑓𝑛+1 +

19𝑓𝑛+2 + 9𝑓𝑛+3) so as to investigate the applicability of the derived orthogonal 

polynomials. 

For this purpose, we shall seek an approximation of the form 𝑦(𝑥) =

∑ 𝑎𝑟𝑞𝑟(𝑥)𝑠+𝑘−1
𝑟=0                 (25) 

 

Where 𝑞𝑟(𝑥) is the orthogonal polynomials derived. 

Equation (25) is collocated and interpolated at 𝑥 = 𝑥𝑛+𝑖, 𝑖 = 0(1)3 and 𝑥 = 𝑥𝑛+2 

respectively to obtain a system of equations which are solved and the resulting 

values of 𝑎𝑟  are substituted back into (25) to have a continuous scheme. 

Evaluating the continuous scheme at the grid point 𝑥 = 𝑥𝑛+3 yields the Adams-

Moulton explicit three-step method. 

A set of polynomials shall now be employed to formulate a continuous scheme 

through which numerical solutions of initial value problems in ordinary 

differential equations are obtained. 

 

Our objective in this section is to derive a two-step continuous hybrid linear 

multistep method in the sub-interval [𝑥𝑛 , 𝑥𝑛+𝑝] of [a, b] where 𝑥 =
2𝑋−2𝑥𝑛−𝑝ℎ

𝑝ℎ
 and 

𝑝 varies as the method to be derived. For this case 

 𝑝 = 2. 

The procedure involves interpolating (25) at 𝑥 = 𝑥𝑘+𝑖 , 𝑖 = 0,
1

2
, 1and collocating 

the third derivative of (25) at 𝑥 = 𝑥𝑘+𝑖 , 𝑖 = 0,
1

2
, 1,

3

2
 𝑎𝑛𝑑 2.   

The 𝑎𝑟(0 ≤ 𝑟 ≤ 7), from the resulting system of equations are obtained and 

substituted into (25) to have the continuous equation  

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝐾 + 𝛼1

2
(𝑥)𝑦

𝑘+
1

2
+ 𝛼1(𝑥)𝑦𝑘+1 + ℎ3 (∑2

𝑗=0 𝛽𝑗(𝑥)𝑓𝑘+𝑗 + 𝛽1

2
(𝑥)𝑓

𝑘+
1

2
+

𝛽3

2

(𝑥)𝑓
𝑘+

3

2

)                                                                                                   (26) 

 

Evaluating equation (26) at 𝑥 = 𝑥
𝑘+

3

2

 and 𝑥 = 𝑥𝑘+2 yield the following main 

methods as 𝑦
𝑘+

3

2

= 𝑦𝑘 − 3𝑦
𝑘+

1

2
+ 3𝑦𝑘+1 +

ℎ3

1920
(𝑓𝑘 + 116𝑓

𝑘+
1

2
+ 126𝑓𝑘+1 −

4𝑓
𝑘+

3

2

+ 𝑓𝑘+2)  (27) 

 𝑦𝑘+2 = 3𝑦𝑘 − 8𝑦
𝑘+

1

2
+ 6𝑦𝑘+1 +

ℎ3

480
(𝑓𝑘 + 86𝑓

𝑘+
1

2
+ 126𝑓𝑘+1 + 26𝑓

𝑘+
3

2

+ 𝑓𝑘+2)                                                                                                                                   

  (28) 

The general block formular proposed in[10] in the normalized form given as  

𝐴(0)𝑌𝑚 = 𝑒𝑦𝑚 + ℎ𝜇−𝜏𝑑𝑓(𝑦𝑚) + ℎ𝜇−𝜏𝑏𝐹(𝑦𝑚)                                                                                      

 (29)     

shall be adopted inorder to develop the block method from the continuous 

scheme. 

Evaluating the first and second derivatives of (26) at 𝑥 = 𝑥𝑘+𝑖 , 𝑖 =

0,
1

2
, 1,

3

2
 𝑎𝑛𝑑 2 and substituting the resulting equations and the main methods 

(27), (28) into (29) and solving simultaneously gives a block formula 

represented as  

 

𝑦
𝑘+

1

2
= 𝑦𝑘 +

1

2
ℎ𝑦𝑘

′ +
1

8
ℎ2𝑦𝑘

′′ +
113

8960
ℎ3𝑓𝑘 −

103

13440
ℎ3𝑓𝑘+1 −

47

80640
ℎ3𝑓𝑘+2 +

107

8064
ℎ3𝑓

𝑘+
1

2
+                        

43

13440
ℎ3𝑓

𝑘+
3

2

  

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑦𝑘
′ +

1

2
ℎ2𝑦𝑘

′′ +
331

5040
ℎ3𝑓𝑘 −

1

21
ℎ3𝑓𝑘+1 −

19

5040
ℎ3𝑓𝑘+2 +

83

630
ℎ3𝑓

𝑘+
1

2
+                         

13

630
ℎ3𝑓

𝑘+
3

2

  

𝑦
𝑘+

3
2

= 𝑦𝑘 +
3

2
ℎ𝑦𝑘

′ +
9

8
ℎ2𝑦𝑘

′′ +
1431

8960
ℎ3𝑓𝑘 −

243

4480
ℎ3𝑓𝑘+1

−
81

8960
ℎ3𝑓𝑘+2 + 

1863

4480
ℎ3𝑓

𝑘+
1
2

+      

              
45

896
ℎ3𝑓

𝑘+
3

2

  

  𝑦𝑘+2 = 𝑦𝑘 + 2ℎ𝑦𝑘
′ + 2ℎ2𝑦𝑘

′′ +
31

105
ℎ3𝑓𝑘 +

4

105
ℎ3𝑓𝑘+1 −

1

63
ℎ3𝑓𝑘+2 +

272

315
ℎ3𝑓

𝑘+
1

2
+

16

105
ℎ3𝑓

𝑘+
3

2

  

𝑦
𝑘+

1
2

′ = ℎ𝑦𝑘
′ + ℎ2𝑦𝑘

′′ +
53

360
ℎ3𝑓𝑘 −

1

12
ℎ3𝑓𝑘+1 −

1

120
ℎ3𝑓𝑘+2

+
2

5
ℎ3𝑓

𝑘+
1
2

+
2

45
ℎ3𝑓

𝑘+
3
2

 

𝑦𝑘+1
′ = ℎ𝑦𝑘

′ +
3

2
ℎ2𝑦𝑘

′′ +
147

640
ℎ3𝑓𝑘 +

27

320
ℎ3𝑓𝑘+1 −

9

640
ℎ3𝑓𝑘+2 +

117

160
ℎ3𝑓

𝑘+
1

2
+  

3

32
ℎ3𝑓

𝑘+
3

2

  

𝑦
𝑘+

3
2

′ = ℎ𝑦𝑘
′ +

1

2
ℎ2𝑦𝑘

′′ +
367

5760
ℎ3𝑓𝑘 −

47

960
ℎ3𝑓𝑘+1 −

7

1960
ℎ3𝑓𝑘+2

+
3

32
ℎ3𝑓

𝑘+
1
2

+ 
29

1440
ℎ3𝑓

𝑘+
3
2
 

𝑦𝑘+2
′ = ℎ𝑦𝑘

′ + 2ℎ2𝑦𝑘
′′ +

14

45
ℎ3𝑓𝑘 +

4

15
ℎ3𝑓𝑘+1 +

16

15
ℎ3𝑓

𝑘+
1

2
+

16

45
ℎ3𝑓

𝑘+
3

2

   

𝑦
𝑘+

1
2

′′ = ℎ2𝑦𝑘
′′ +

29

180
ℎ3𝑓𝑘 +

2

15
ℎ3𝑓𝑘+1 −

1

180
ℎ3𝑓𝑘+2 +

31

45
ℎ3𝑓

𝑘+
1
2

+
1

45
ℎ3𝑓

𝑘+
3
2
 

𝑦𝑘+1
′′ = ℎ2𝑦𝑘

′′ +
27

160
ℎ3𝑓𝑘 +

9

20
ℎ3𝑓𝑘+1 −

3

160
ℎ3𝑓𝑘+2 +

51

80
ℎ3𝑓

𝑘+
1

2
+

21

80
ℎ3𝑓

𝑘+
3

2

  

𝑦
𝑘+

3
2

′′ = ℎ2𝑦𝑘
′′ +

251

1440
ℎ3𝑓𝑘 −

11

60
ℎ3𝑓𝑘+1 −

19

1440
ℎ3𝑓𝑘+2 +

323

720
ℎ3𝑓

𝑘+
1
2

+    

                              
53

720
ℎ3𝑓

𝑘+
3

2

  

𝑦𝑘+2
′′ = ℎ2𝑦𝑘

′′ +
7

45
ℎ3𝑓𝑘 +

4

15
ℎ3𝑓𝑘+1 +

7

45
ℎ3𝑓𝑘+2 +

32

45
ℎ3𝑓

𝑘+
1

2
+

32

45
ℎ3𝑓

𝑘+
3

2

                                              (30)  

 

 

 

3.0 BASIC PROPERTIES OF THE METHOD 

Definition 3.1.1  Order and Error Constant 

 

The linear operator L of the block (29) is defined as  

𝐿{𝑦(𝑥): ℎ} = 𝑌𝑚 − 𝑒𝑦𝑚 + ℎ𝜇−𝜏𝑑𝑓(𝑦𝑚) + ℎ𝜇−𝜏𝑏𝐹(𝑦𝑚)                   

               (31) 

Using Taylor expansion to expansion to expand 𝑦(𝑥𝑛 + 𝑖ℎ) and 

𝑓(𝑥𝑛 + 𝑗ℎ), (31) becomes 

𝐿{𝑦(𝑥): ℎ} = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦′(𝑥) + 𝐶2ℎ2𝑦′′(𝑥) + ⋯ + 𝐶𝑝ℎ𝑝𝑦(𝑝)(𝑥)                       

      (32) 
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The block (29) and associated linear operator are said to have order p if  

𝐶0 = 𝐶1 = 𝐶2 = ⋯ + 𝐶𝑝 = 𝐶𝑝+1 = 𝐶𝑝+2 ≠ 0     

The term 𝐶𝑝+2 ≠ 0 is called the error constant and the local truncation error is 

given as 𝑡𝑛+𝑘 = 𝐶𝑝+2ℎ(𝑝+2)𝑦(𝑝+2)(𝑥𝑛) + 0ℎ(𝑝+3) 

Thus, equation (27) and (28) each are of order 5 and error constant 

 
243

11468800
 𝑎𝑛𝑑 

139

10321920
 respectively. The formulae in the block (30) are all of 

order 5 with error constants  

𝐶𝑝+3 = [
1

11520
 ,

23

1814400
,

829

1124800
,

61

3444525
,

13

453600
, −

11

14175
,

211

5248800
,

7

328050
,

1

21600
, −

1

450
 ] 

Respectively. 

 

Definition 3.1.2  Zero-Stability 

The block (29) is said to be zero stable if the roots 𝑍𝑠 = 1,2 … 𝑁 of the 

characteristic polynomial 𝜌(𝑧) = det (𝑧𝐴 − 𝐸) satisfies |𝑧| ≤ 1 and the root  

|𝑧| = 1 has multiplicity not exceeding the order of the differential equation. 

Also, as ℎ𝜇 → 0, 𝜌(𝑧) = 𝑧𝑟−𝜇(𝜏 − 1)𝜇, where 𝜇 is the order of the differential 

equation, 𝑟 = dim (𝐴(0)).  

Thus, the proposed method has been investigated to be zero stable. 

 

Definition 3.1.3  Consistency 

A numerical method is consistent if the order, 𝑝 ≥ 1 

Since the order of the derived method is, 𝑝 ≥ 1, the method is said to be 

consistent. 

 

Definition 3.1.4  Convergence 

The necessary and sufficient condition for a numerical method to be convergent 

is for it to be zero-stable and consistent. According to the definition, the method 

derived is convergent 

 

 

4.0  Numerical Applications 

We consider here the application of the derived schemes to three test problems 

for the efficiency and accuracy of the method implemented as block method 

 

Problem 4.1.1:  (A non-linear problem)  

 𝑦2𝑦′′′ = 1,    𝑦(0) = 1    𝑦′(0) = 1,    𝑦′′(0) = 1,    ℎ = 0.1 

Source: [11]   

The above problem was derived by Tanner to investigate the motion of the 

contact line for a thin oil drop spreading on a horizontal surface. 

 

Problem 4.1.2  Non-linear Blasius Equation (Application Problem)  

 2𝑦′′′ + 𝑦𝑦′′ = 0 

𝑦(0) = 0,  𝑦′(0) = 0,  𝑦′′(0) = 1 

             The exact solution does not exist. 

Source: [2] 

  

Problem 4.1.3  Non-linear Genesio Equation (Application Problem) 

Here we consider the nonlinear chaotic system from Genesio and 

Tesi (1992)  

  

𝑥′′′ + 𝐴𝑥′′ + 𝐵𝑥′ − 𝑓(𝑥(𝑡)) = 0 

with  

 𝑓(𝑥(𝑡)) = −𝐶𝑥(𝑡) + 𝑥2(𝑡) 

that is subject to the following initial conditions:  

 𝑥(0) = 0.2,    𝑥′(0) = −0.3,    𝑥′′(0) = 0.1,   𝑡 ∈ [0, 𝑏], 

where 𝐴 = 1.2,    𝐵 = 2.29    𝑎𝑛𝑑     𝐶 = 6  are positive constants that 

satisfied 𝐴𝐵 < 𝐶 for the existence of the solution. 

Source: [15] 
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TABLE 4.1.2: COMPARING THE SOLUTION OF THE APPROXIMATE AND THE   

EXISTING METHOD FOR PROBLEM 4.1.2 
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TABLE 4.1.3: ABSOLUTE ERRORS COMPARING THE EXACT AND 

NUMERICAL SOLUTION OF HTEPM FOR PROBLEM 4.1.3 

 

X Exact Solution Result of New Method Error in 
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5.0 DISCUSSION OF RESULTS 

Problems 4.1.1 is a non-linear problem derived by Tanner to investigate 

the motion of the contact line for a thin oil drop spreading on a horizontal 

surface. Problem 4.1.2 considered Blassius equation in thermodynamics. 

The non-linear Genesio equation of problem 4.1.3 is a non-linear chaotic 

system from [15]. The results were displayed in Tables 4.1.1, 4.1.2 and 

4.1.3 respectively. The absolute errors obtained from tables 4.1.1 and 4.1.2 

revealed that on comparison with the exact solution, the low errors 

resulted demonstrate their effectiveness and accuracy as the schemes 

performed favorably well. The exact solution, however, for problems 4.1.1, 

4.1.2, and 4.1.3 were not available. Hence, they were generated directly 

using Maple software environment. 

 

 

 6.0 CONCLUSION   

The construction of a new class of continuous implicit two-step hybrid 

scheme capable of solving Initial Value problems of third order ODEs has 

been the central concern in this work. The Orthogonal Polynomials valid in 

the interval [−1,1] with respect to weight function 𝑤(𝑥) = 1 +
𝑥

2
 have been 

chosen as basis functions to develop the schemes using interpolation and 
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collocation techniques with the incorporation of equally spaced off-step points 

in order to approximate the solutions of IVPs. The scheme is capable of handling 

non-linear application problems. Tables 1, 2 and 3 displays the accuracy of the 

numerical results of the HTEPM with the exact solution and existing methods. 

The desirability and superiority of the method have been established by the 

numerical results.  
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