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discusses the advantages of employing such techniques, including their ability to handle stiff ODEs and
their suitability for implementation in computational algorithms. Through a comprehensive analysis,
this paper aims to provide insights into the practical application and significance of ten-step block

techniques in numerical computation.
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Introduction

In the realm of computational mathematics, the numerical solution of
ordinary differential equations (ODEs) stands as a cornerstone, enabling
the simulation and analysis of dynamic systems across various scientific
and engineering domains. Among the myriad methods available for
solving ODEs, ten-step block techniques offer a structured and efficient
approach specifically tailored for the solution of first-order ODEs. This

introduction seeks to provide a comprehensive overview of these
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techniques, exploring their theoretical foundations, practical

applications, and computational implications.

The development of ten-step block techniques can be traced back to
the seminal work of Hairer and Wanner, who introduced the concept
in their influential book "Solving Ordinary Differential Equations I:
Nonstiff Problems"” [1]. This work laid the groundwork for a
systematic approach to numerically solving first-order ODEs,

emphasizing the importance of stability, accuracy, and efficiency in
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computational algorithms. Subsequent research by Hairer, Ngrsett, and
Wanner further refined and extended the theory behind these techniques,

elucidating their convergence properties and practical implementation

(2]

At the heart of ten-step block techniques lies the recognition of the challenges
posed by stiff ODEs, where traditional numerical methods may exhibit poor
performance or fail to converge. Stiffness arises when there is a significant
disparity in the characteristic timescales of the underlying dynamical processes,
leading to numerical instabilities and oscillations. By breaking down the
solution process into ten distinct steps, these techniques mitigate stiffness-

related issues and ensure robustness across a wide range of scenarios [3].

The theoretical foundation of ten-step block techniques is grounded in the
theory of numerical integration and iterative approximation methods.
Leveraging concepts from numerical analysis, such as interpolation,
extrapolation, and stepsize control, these techniques offer a systematic
framework for advancing the solution from one time step to the next. The
stepwise approach not only enhances stability and accuracy but also allows for
adaptive adjustment of the computational effort based on the local behavior of

the solution [4].

Practical applications of ten-step block techniques abound in scientific research
and engineering practice. From modeling chemical kinetics and biological
dynamics to simulating electrical circuits and mechanical systems, these
techniques find widespread use in diverse domains. For instance, in the
field of chemical kinetic, researchers rely on these techniques to study reaction
mechanisms, predict reaction rates, and optimize process conditions [5].
Similarly, in control engineering, ten-step block techniques play a crucial role in
analyzing system dynamics, designing feedback controllers, and optimizing

control performance [6].

In summary, ten-step block techniques represent a powerful tool in the
computational approaches to first-order ordinary differential equations,
offering a balance between stability, accuracy, and computational efficiency.
Building upon a solid theoretical foundation and supported by practical
applications across various disciplines, these techniques continue to drive
advancements in computational mathematics and enable researchers and

engineers to tackle complex dynamical systems with confidence.
Review on the Class of Problems

The numerical approaches to solving first-order ordinary differential equations
(ODEs) using ten-step block techniques represents a significant advancement
in computational mathematics, offering a structured and efficient approach to
tackling a wide range of problems across diverse fields. This review aims to
provide an overview of the class of problems that fall under the purview of these

techniques, highlighting their relevance, applications, and advantages.

First-order ODEs arise ubiquitously in scientific, engineering, and mathematical
contexts, governing the dynamics of systems ranging from simple mechanical
oscillators to complex biochemical reactions. The ability to accurately
approximate their solutions is essential for understanding system behavior,
predicting outcomes, and designing interventions or control strategies.
However, the analytical solution of many first-order ODEs is often elusive or

computationally intractable, necessitating the use of numerical methods.

Ten-step block techniques offer a systematic and robust approach to
numerically solve first-order ODEs, particularly those exhibiting stiff
behavior or requiring high accuracy. These techniques break down
the solution process into ten distinct steps, each designed to enhance
stability, convergence, and computational efficiency. By leveraging a
combination of interpolation, iteration, and stepsize control
strategies, they provide reliable solutions even in challenging

scenarios.

The class of problems suitable for treatment with ten-step block
techniques encompasses a broad spectrum of applications, including

but not limited to:

1. Chemical Kinetics: Modeling the time evolution of chemical
reactions and reaction networks is a classic application of first-
order ODEs. Ten-step block techniques offer a reliable means of
simulating complex kinetic mechanisms, enabling researchers
to study reaction dynamics, identify key intermediates, and
optimize reaction conditions.

2. Electrical Circuits: Analysis and design of electrical circuits
often involve solving first-order ODEs

3. describing the behavior of circuit components such as
capacitors, inductors, and resistors. Ten-step block techniques
facilitate the simulation of transient and steady-state responses
in circuits, aiding in the design and optimization of electronic
systems.

4. Biological Systems: From population dynamics to
physiological processes, biological systems are

5. governed by first-order ODEs describing the rates of change of
various quantities. Ten-step block techniques are invaluable for
modeling biological phenomena such as enzyme Kkinetics,
population growth, and drug pharmacokinetics, enabling
researchers to elucidate underlying mechanisms and predict
system behavior.

6. Mechanical Systems: Analysis of mechanical systems,
including vibrations, damping, and motion

7.  trajectories, often involves solving first-order ODEs derived
from Newton’s laws of motion or energy conservation
principles. Ten-step block techniques provide a reliable means
of simulating mechanical systems with non linearities, damping
effects, and external forcing, aiding in design optimization and
performance prediction.

8. Control Systems: Design and analysis of control systems
rely on the solution of first-order ODEs

9. representing the dynamics of the system under control. Ten-
step block techniques facilitate the simulation of control
systems, enabling engineers to evaluate stability, performance,
and robustness characteristics under various operating
conditions.

In summary, the class of problems addressed by ten-step block

techniques encompasses a diverse array of scientific, engineering,

and mathematical challenges. By offering a structured and efficient
approach to numerically solving first-order ODEs, these techniques

empower researchers, engineers, and practitioners to tackle complex
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problems, gain insights into system behavior, and drive innovation across

a wide range of domains.

Derivation of the Numerical Solution

This section examines the derivation of the method, Given a power series of the

form:

Yy () =

1)

Where ’a»’ represents the parameters to be determined, ‘q" represents the

quantity of interpolation points, T’ represents the quantity of collocation points

And the first derivatives of (1)

v () = GV E ™
>

=0
(2)

Equation (1) and (2) are Known as the basis function and differential system

respectively.

Now we interpolate (1) at x = xp+q such that q = 0 and equation (2) is
collocated x = xp+r at for r =0,1,2,3,4,5,6,7,8,9,k whereq’ represents
the interpolation points and 'r’ represents the collocation points, with k being

the step length.
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Analysis of Basic Properties of the Block Technique

Within this section, we delve into an analysis of the fundamental
characteristics of the Block method. The aim is to assess their validity
covering aspects such as order and error constant, consistency, zero

stability and convergence.
Order of convergence and Error Constant of the Block Technique

Let’s examine the linear operator, denoted as 'L’, associated with the

Block Method. This operator is defined as follows:

h ot f

‘O=a() -+ SO ™
70

Where y(x) represents an arbitrary test function with continuous

differentiability within the interval [a, b]. By expanding y(x. + jh),
y/(xn + jh)andy,(xn +vih) into Taylor series centered around x» and

collecting the coefficients ofh(q) :q=0,1,2,3,.., we can express L as:

Lly(x); h] = coy(xn) + c1hy'(xa) + c2h2y"(xn) + ... + cqhy(xn) + ...
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In this expression, ¢, represents vectors, if we can determine that:
co=Cc1=C2=..=Cq =0:¢cq+1=0
Then, we can affirm that Block Method is of order g and its error constant is cg+1,

Now, applying matrix inversion method in the discrete scheme, we obtain
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Now expanding the above matrix equation in Taylor’s series and comparing the

coefficients we have;
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Consistency

In accordance with Lambert (1973), Awoyemi (2001), a linear multi-step

method is said to be consistent if it has order p > 1

Hence p = 1 is sufficient condition for the block method to be consistent since p

=(11,11,11,11,11,11, 11,11,
11,11)=>1.
Therefore, the method is consistent.

Zero-Stability

The zero-stability of the linear multistep technique is defined as
follows: no root of the first characteristic polynomial has modulus
more than one, and the multiplicity of each root of modulus one is
smaller than the order of the differential equation (Adeyefa and
Kuboye, 2020).

The first characteristics polynomial is given by

P(z)=det zQ-T =0 Consequently, we have
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p(@)=22(z-1)=0

Thus solving for Z in

p(2)=22(z-1)=0
p(z2)=2z1=22=23 =24 =25 =26 =27 =28 =29 = 0,210 = 1

Z=10,0,0,0,0,0,0,0,0,1. Therefore, it indicates the block method is zero-
stable.

Convergence

Ten-step approaches’ convergence is discussed in terms of their

fundamental characteristics, including consistency and zero-stability.

Since the proposed block approach is consistent and zero-stable, it is

required to be convergent
Implementation of the Method

Here, we demonstrate the practical applicability of our newly
developed method by applying it to solve first-order differential
equations. We will use our method to tackle a selection of initial value
problems that have been previously addressed in the literature, and

then compare our results with those obtained through other
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established methods. This will serve as a test of our method'’s effectiveness

and accuracy.

Problem 1:

’

y = y0)=1 h=01

Exact Solution: y(x) = e X Source: [Ogunware etal. 2021] Problem 2:

V' =05(1-) $(0) =05, h =01

Exact solution: y(t) =1 - 0.53_0'5t Source: [Zurni and Adeyeye 2016] Problem
3:

An oil refinery might have a storage tank with 2000 gallons of gasoline in it,
and that gasoline might have 100 pounds of an additive already dissolved in
it. At a rate of 40gal/min, winter-weather gasoline with 2Ib of additive per
gallon is poured into the tank. At a rate of 45gal/min, the thoroughly mixed
solution is being pumped out. How much of the additive is in the tank at 0.1, 0.5,
and 1 min after pumping starts, according to a numerical integrator? Take the
weight (in pounds) of the additive in the tank at instant ¢ to be y. When t = 0, we
know that y = 100. This leads us to the following statements about the Initial

Value Problem (IVP) that represents the mixture process:

) =80 - —— (69100

With the theoretical solution,

¥(8)=2(2000 - 56)- 3200 (2000559
Source: [Ukpebor etal. 2022]
The following notations are used:

v" NM - New method

ES - Exact solution

CS - Computed solution

Error = Exact solution - Computed solution

EINM - Error in new method

CSINM - Computed solution in new method

CSIOKAAM(2021) - Computed solution in Ogunware, Kuboye,

Abolarin And Mmaduakor (2021)

v' EIOKAAM(2021) - Error in Ogunware, Kuboye, Abolarin And
Mmaduakor (2021)

v' CSIZAA(2016)- Computed solution in Zurni and Adeyeye (2016)

EIZAA(2016)- Error in Zurni and Adeyeye (2016)
v' CSIUAAA(2022) - Computed solution in Ukpebor, Adoghe and

Airemen (2022)
EIUAAA(2022) - Error in Ukpebor, Adoghe and Airemen (2022)

AN NN Y N N

<

Tables of Result and Comparison
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Table 1a: Showing the results from problem 1.

b'¢ Exact Solution Computed Solution Error in new
method

0.10 0.90483741803595957 0.904837418035956174 3.3991E-15
32 1

0.20 0.81873075307798185 0.818730753077979279 2.5794E-15
87 3

0.30 0.74081822068171786 0.740818220681715390 2.4752E-15
61 9

0.40 0.67032004603563930 0.670320046035637126 2.1747E-15
07 0

0.50 0.60653065971263342 0.606530659712631411 2.0125E-15
36 1

0.60 0.54881163609402643 0.548811636094024656 1.7762E-15
26 4

0.70 0.49658530379140951 0.496585303791407842 1.6724E-15
47 3

0.80 | 0.44932896411722159 | 0.449328964117220220 1.3706E-15
14 8

0.90 0.40656965974059911 0.406569659740597368 1.7436E-15
19 3

1.00 0.36787944117144232 0.367879441171444216 1.8952E-15
16 8

Table 1b: Comparison of the computed result for solving problem

1.

X CSINM CSIOKAAM(2021)
0.10 0.9048374180359561741 0.904837417996166460
0.20 0.8187307530779792793 0.818730753005969650
0.30 0.7408182206817153909 0.740818220583978950
0.40 0.6703200460356371260 0.670320045917721980
0.50 0.6065306597126314111 0.606530659579263440
0.60 0.5488116360940246564 0.548811635949212780
0.70 0.4965853037914078423 0.496585303638537760
0.80 0.4493289641172202208 0.449328963959136910
0.90 0.4065696597405973683 0.406569659579678110
1.00 0.3678794411714442168 0.367879441009656470

Table 1c. Comparison of error for solving problem 1.

X EINM EIOKAAM (2021)
0.10 3.3991E-15 3.979306E-11
0.20 2.5794E-15 7.201217E-11
0.30 2.4752E-15 9.773893E-11
0.40 2.1747E-15 1.179173E-10
0.50 2.0125E-15 1.333700E-10
0.60 1.7762E-15 1.448137E-10
0.70 1.6724E-15 1.528717E-10
0.80 1.3706E-15 1.580846E-10
0.90 1.7436E-15 1.609209E-10
1.00 1.8952E-15 1.617858E-10
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Table 2a: Showing the results from problem 2. Table 2c: Comparison of error for solving problem 2.

X Exact Solution Computed Error in X EINM EIZAA(2016)
Solution new 0.10 5.47E-19 3.826740E-14
0.20 4.42E-19 7.484830E-14
method
0.30 4.41E-19 1.058240E-13
0.10 0.52438528774964299 0.5243852877496429 5.47E-19
0.40 4.10E-19 1.354510E-13
5454 96001
0.50 3.97E-19 1.601760E-13
0.20 0.54758129098202021 0.5475812909820202 4.42E-19
0.60 3.71E-19 1.838420E-13
3418 13860
0.70 3.63E-19 2.032250E-13
0.30 0.56964601178747109 0.5696460117874710 4.41E-19
0.80 3.21E-19 2.217960E-13
6386 96827
0.90 3.86E-19 2.366300E-13
0.40 0.59063462346100907 0.5906346234610090 4.10E-19
1.00 1.85E-19 2.508620E-13
0665 71075
0.50 0.61059960846429756 0.6105996084642975 3.97E-19
5878 66275 Table 3a: Showing the results from problem 3.
0.60 0.62959088965914106 0.6295908896591410 3.71E-19
6966 67337 X Exact Solution Computed Solution Error
0.70 0.64765595514064328 0.6476559551406432 3.63E-19 in new
2822 83185
method
0.80 0.66483997698218034 0.6648399769821803 3.21E-19
9628 49949 0.10 107.76623011683094856 107.766230116830948553 7E-18
0.20 | 115.51494091930285113 | 115.514940919302851132 2E-18
0.90 0.68118592418911335 0.6811859241891133 3.86E-15
0.30 123.24616305088452199 123.246163050884521986 4E-18
3428 53814
0.40 130.95992710909107254 130.959927109091072540 0
1.00 0.69673467014368328 0.6967346701436832 1.85E-19
0.50 138.65626364554135351 138.656263645541353514 4E-18
8198 88013
0.60 146.33520316601533958 146.335203166015339580 0
0.70 153.99677613051145661 153.996776130511456612 2E-18
Table 2b: Comparison of the computed result for solving problem 2. 0.80 | 161.64101295330385156 | 161641012953303851562 |  2E-18
0.90 169.26794400299960501 169.267944002999605009 1E-18
X CSINM CSIZAA(2016)
0.10 0.5243852877496429960 0.524385287749604728
01 04 Table 3b:Comparison of the computed result for solving problem
3
0.20 0.5475812909820202138 0.547581290981945365
60 1 X CSINM CSIUAAA(2022)
27 69 0.20 115.514940919302851132 115.51494090305853318
0.40 0.5906346234610090710 0.590634623460873619 0.30 123.246163050884521986 123.24616302194271446
75 56 0.40 130.959927109091072540 130.95992706677669876
0.50 0.6105996084642975662 0.610599608464137390 0.50 138.656263645541353514 138.65626358918532018
75 10 0.60 146.335203166015339580 146.33520309495466018
0.70 153.996776130511456612 153.99677604408937590
0.60 0.6295908896591410673 0.629590889658957225
0.80 161.641012953303851562 161.64101285086997114
37 13 0.90 169.267944002999605009 169.26794388391000992
0.70 0.6476559551406432831 0.647655955140440057 1.00 176.877599602595886421 176.87759946621327280
85 88
0.80 0.6648399769821803499 0.664839976981958553
49 68 Table 3c: Comparison of error for solving problem 3
0.90 0.6811859241891133538 0.681185924188876723 X EINM EIUAAA(2022)
14 20 0.10 7E-18 4.22776612E-09
1.00 0.6967346701436832880 0.696734670143432426 0.20 2E-18 1.624431802E-08
13 61 0.30 4E-18 2.894180754E-08
0.40 0 4.231437374E-08
0.50 4E-18 5.635603322E-08
0.60 0 7.106067932E-08
0.70 2E-18 8.642208080E-08
0.80 2E-18 1.0243388046E-07
0.90 1E-18 1.1908959508E-07
1.00 1E-18 1.3638261370E-07
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Conclusion

In this paper, we introduced a precise ten-step block technique for directly
solving first-order differential equations numerically. This method was
developed through multi-step collocation techniques such that an approximate
power series was applied as a basis function. The interpolation of the basis
function was done at xn+q, q = 0, while the collocation of the derivative of the
basis function was done at xp+r, r=0,1,2,3,4,5,6,7, 8,9, and 10. These
equations were solved using the Gaussian elimination method in order to find
the unknown variables a’s, which were substituted into the basis function to
give a continuous implicit scheme. This scheme was evaluated at f; (t), t = 0,
1, 2,3,4 5, 6,7, 8, 9, 10, and the values obtained were substituted into the
continuous scheme to give the discrete schemes. The order of the block method
is eleven (11) and was also found to be zero stable. The method is consistent as
the order of the method is greater than one, and it also converges. All
computational work was done through computer programs formulated,
ordered, and executed using the Maple Software application. The results
obtained were compared to those from existing methods that addressed similar
problems, revealing a favorable error correlation. As illustrated in Tables 1c,
2¢, and 3c, the new method demonstrates superior accuracy compared to
existing methods, with reduced errors. Therefore, the new method is a highly
accurate numerical solution for directly solving first-order ordinary differential

equations.
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