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ARTICLE DETAILS ABSTRACT 

Blockchain technology is revolutionizing the financial technology sector (FinTech) by increasing security and The 
numerical solution of first-order ordinary differential equations (ODEs) plays a crucial role in various 
scientific and engineering applications. This paper explores the ten-step block techniques employed 
for efficiently solving such equations. These techniques offer a structured approach to approximate 
the solutions of ODEs, ensuring accuracy and stability. The paper delves into the theoretical foundation 
of these methods, highlighting their iterative nature and the stepwise process involved. Additionally, it 
discusses the advantages of employing such techniques, including their ability to handle stiff ODEs and 
their suitability for implementation in computational algorithms. Through a comprehensive analysis, 
this paper aims to provide insights into the practical application and significance of ten-step block 
techniques in numerical computation. 
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Introduction  

In the realm of computational mathematics, the numerical solution of 

ordinary differential equations (ODEs) stands as a cornerstone, enabling 

the simulation and analysis of dynamic systems across various scientific 

and engineering domains. Among the myriad methods available for 

solving ODEs, ten-step block techniques offer a structured and efficient 

approach specifically tailored for the solution of first-order ODEs. This 

introduction seeks to provide a comprehensive overview of these 

techniques, exploring their theoretical foundations, practical 

applications, and computational implications. 

The development of ten-step block techniques can be traced back to 

the seminal work of Hairer and Wanner, who introduced the concept 

in their influential book "Solving Ordinary Differential Equations I: 

Nonstiff Problems" [1]. This work laid the groundwork for a 

systematic approach to numerically solving first-order ODEs, 

emphasizing the importance of stability, accuracy, and efficiency in 

 

https://journals.tau.edu.ng/index.php/tau-jist
https://journals.tau.edu.ng/index.php/tau-jist
https://doi.org/10.5281/zenodo.15003534
mailto:opeyemi.enoch@fuoye.edu.ng
mailto:olaleye.lateef.181043@fuoye.edu.ng
mailto:ilesanmianthony34@yahoo.com
mailto:opeyemi.enoch@fuoye.edu.ng,
mailto:olaleye.lateef.181043@fuoye.edu.ng


Thomas Adewumi University Journal of  Innovation,  Science and Technology  

 Cite the Article: Enoch, o. O. Olaleye, l.o. & Ilesanmi, a.o., (2020). Ten-Step Block Techniques for Numerical Solution of First-order Ordinary Differential
  Equations  

 

computational algorithms. Subsequent research by Hairer, Nørsett, and 

Wanner further refined and extended the theory behind these techniques, 

elucidating their convergence properties and practical implementation 

[2]. 

At the heart of ten-step block techniques lies the recognition of the challenges 

posed by stiff ODEs, where traditional numerical methods may exhibit poor 

performance or fail to converge. Stiffness arises when there is a significant 

disparity in the characteristic timescales of the underlying dynamical processes, 

leading to numerical instabilities and oscillations. By breaking down the 

solution process into ten distinct steps, these techniques mitigate stiffness-

related issues and ensure robustness across a wide range of scenarios [3]. 

The theoretical foundation of ten-step block techniques is grounded in the 

theory of numerical integration and iterative approximation methods. 

Leveraging concepts from numerical analysis, such as interpolation, 

extrapolation, and stepsize control, these techniques offer a systematic 

framework for advancing the solution from one time step to the next. The 

stepwise approach not only enhances stability and accuracy but also allows for 

adaptive adjustment of the computational effort based on the local behavior of 

the solution [4]. 

Practical applications of ten-step block techniques abound in scientific research 

and engineering practice. From modeling chemical kinetics and biological 

dynamics to simulating electrical circuits and mechanical systems, these 

techniques find widespread use in diverse domains. For instance, in the 

field of chemical kinetic, researchers rely on these techniques to study reaction 

mechanisms, predict reaction rates, and optimize process conditions [5]. 

Similarly, in control engineering, ten-step block techniques play a crucial role in 

analyzing system dynamics, designing feedback controllers, and optimizing 

control performance [6]. 

In summary, ten-step block techniques represent a powerful tool in the 

computational approaches to first-order ordinary differential equations, 

offering a balance between stability, accuracy, and computational efficiency. 

Building upon a solid theoretical foundation and supported by practical 

applications across various disciplines, these techniques continue to drive 

advancements in computational mathematics and enable researchers and 

engineers to tackle complex dynamical systems with confidence. 

Review on the Class of Problems 

The numerical approaches to solving first-order ordinary differential equations 

(ODEs) using ten-step block techniques represents a significant advancement 

in computational mathematics, offering a structured and efficient approach to 

tackling a wide range of problems across diverse fields. This review aims to 

provide an overview of the class of problems that fall under the purview of these 

techniques, highlighting their relevance, applications, and advantages. 

First-order ODEs arise ubiquitously in scientific, engineering, and mathematical 

contexts, governing the dynamics of systems ranging from simple mechanical 

oscillators to complex biochemical reactions. The ability to accurately 

approximate their solutions is essential for understanding system behavior, 

predicting outcomes, and designing interventions or control strategies. 

However, the analytical solution of many first-order ODEs is often elusive or 

computationally intractable, necessitating the use of numerical methods. 

Ten-step block techniques offer a systematic and robust approach to 

numerically solve first-order ODEs, particularly those exhibiting stiff 

behavior or requiring high accuracy. These techniques break down 

the solution process into ten distinct steps, each designed to enhance 

stability, convergence, and computational efficiency. By leveraging a 

combination of interpolation, iteration, and stepsize control 

strategies, they provide reliable solutions even in challenging 

scenarios. 

The class of problems suitable for treatment with ten-step block 

techniques encompasses a broad spectrum of applications, including 

but not limited to: 

1. Chemical Kinetics: Modeling the time evolution of chemical 

reactions and reaction networks is a classic application of first-

order ODEs. Ten-step block techniques offer a reliable means of 

simulating complex kinetic mechanisms, enabling researchers 

to study reaction dynamics, identify key intermediates, and 

optimize reaction conditions. 

2. Electrical Circuits: Analysis and design of electrical circuits 

often involve solving first-order ODEs 

3. describing the behavior of circuit components such as 

capacitors, inductors, and resistors. Ten-step block techniques 

facilitate the simulation of transient and steady-state responses 

in circuits, aiding in the design and optimization of electronic 

systems. 

4. Biological Systems:  From population dynamics to 

physiological processes, biological systems are 

5. governed by first-order ODEs describing the rates of change of 

various quantities. Ten-step block techniques are invaluable for 

modeling biological phenomena such as enzyme kinetics, 

population growth, and drug pharmacokinetics, enabling 

researchers to elucidate underlying mechanisms and predict 

system behavior. 

6. Mechanical Systems: Analysis of mechanical systems, 

including vibrations, damping, and motion 

7. trajectories, often involves solving first-order ODEs derived 

from Newton’s laws of motion or energy conservation 

principles. Ten-step block techniques provide a reliable means 

of simulating mechanical systems with non linearities, damping 

effects, and external forcing, aiding in design optimization and 

performance prediction. 

8. Control Systems: Design and analysis of control systems 

rely on the solution of first-order ODEs 

9. representing the dynamics of the system under control. Ten-

step block techniques facilitate the simulation of control 

systems, enabling engineers to evaluate stability, performance, 

and robustness characteristics under various operating 

conditions. 

In summary, the class of problems addressed by ten-step block 

techniques encompasses a diverse array of scientific, engineering, 

and mathematical challenges. By offering a structured and efficient 

approach to numerically solving first-order ODEs, these techniques 

empower researchers, engineers, and practitioners to tackle complex 
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problems, gain insights into system behavior, and drive innovation across 

a wide range of domains. 

 

Derivation of the Numerical Solution 

This section examines the derivation of the method, Given a power series of the 

form: 

 

(1) 

Where ’am’ represents the parameters to be determined, ‘q’ represents the 

quantity of interpolation points, ‘r’ represents the quantity of collocation points 

And the first derivatives of (1) 

 

(2) 

Equation (1) and (2) are Known as the basis function and differential system 

respectively.  

Now we interpolate (1) at x = xn+q such that q = 0 and equation (2) is 

collocated x = xn+r at for r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, k. where ’q’ represents 

the interpolation points and ’r’ represents the collocation points, with k being 

the step length. 

 

(3) 

 

(4) 

And from (2) we have 

 

 

(5) 

 

(6) 

 

 

(7) 

 

 

Analysis of Basic Properties of the Block Technique 

Within this section, we delve into an analysis of the fundamental 

characteristics of the Block method. The aim is to assess their validity 

covering aspects such as order and error constant, consistency, zero 

stability and convergence. 

Order of convergence and Error Constant of the Block Technique 

Let’s examine the linear operator, denoted as ’L’, associated with the 

Block Method. This operator is defined as follows: 

 

Where y(x) represents an arbitrary test function with continuous 

differentiability within the interval [a, b]. By expanding y(xn + jh), 

y′(xn + jh)andy′(xn + vih) into Taylor series centered around xn and 

collecting the coefficients of h( q) : q = 0,1,2,3,..., we can express L as: 

L[y(x); h] = c0y(xn) + c1hy′(xn) + c2h2y′′(xn) + ... + cqhqyq(xn) + ... 
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In this expression, cq represents vectors, if we can determine that: 

c0 = c1 = c2 = ... = cq = 0 : cq+1 ̸= 0 

Then, we can affirm that Block Method is of order q and its error constant is cq+1, 

Now, applying matrix inversion method in the discrete scheme, we obtain 

 

 

Now expanding the above matrix equation in Taylor’s series and comparing the 

coefficients we have; 

 

Consistency 

In accordance with Lambert (1973), Awoyemi (2001), a linear multi-step 

method is said to be consistent if it has order p ≥ 1 

Hence p ≥ 1 is sufficient condition for the block method to be consistent since p 

= (11, 11, 11, 11, 11, 11, 11, 11, 

11, 11) ≥ 1. 

Therefore, the method is consistent. 

Zero-Stability 

The zero-stability of the linear multistep technique is defined as 

follows: no root of the first characteristic polynomial has modulus 

more than one, and the multiplicity of each root of modulus one is 

smaller than the order of the differential equation (Adeyefa and 

Kuboye, 2020). 

The first characteristics polynomial is given by 

P(z) = det zQ − T = 0 Consequently, we have 

 

 

p(z) = z9(z − 1) = 0 

Thus solving for Z in 

p(z) = z9(z − 1) = 0 

p(z) = z1 = z2 = z3 = z4 = z5 = z6 = z7 = z8 = z9 = 0, z10 = 1 

Z= 0,0,0,0,0,0,0,0,0,1. Therefore, it indicates the block method is zero-

stable. 

Convergence 

Ten-step approaches’ convergence is discussed in terms of their 

fundamental characteristics, including consistency and zero-stability. 

Since the proposed block approach is consistent and zero-stable, it is 

required to be convergent 

Implementation of the Method 

Here, we demonstrate the practical applicability of our newly 

developed method by applying it to solve first-order differential 

equations. We will use our method to tackle a selection of initial value 

problems that have been previously addressed in the literature, and 

then compare our results with those obtained through other 
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2000
9 

2000−5

t 

established methods. This will serve as a test of our method’s effectiveness 

and accuracy. 

Problem 1: 

y′ = −y y(0) = 1, h = 0.1 

Exact Solution: y(x) = e−x Source: [Ogunware et al. 2021] Problem 2: 

y′ = 0.5(1 − y) y(0) = 0.5, h = 0.1 

Exact solution: y(t) = 1 − 0.5e−0.5t Source: [Zurni and Adeyeye 2016] Problem 

3: 

An oil refinery might have a storage tank with 2000 gallons of gasoline in it, 

and that gasoline might have 100 pounds of an additive already dissolved in 

it. At a rate of 40gal/min, winter-weather gasoline with 2lb of additive per 

gallon is poured into the tank. At a rate of 45gal/min, the thoroughly mixed 

solution is being pumped out. How much of the additive is in the tank at 0.1, 0.5, 

and 1 min after pumping starts, according to a numerical integrator? Take the 

weight (in pounds) of the additive in the tank at instant t to be y. When t = 0, we 

know that y = 100. This leads us to the following statements about the Initial 

Value Problem (IVP) that represents the mixture process: 

y′ = 80 − 
  45y   

, y(0) = 100 

With the theoretical solution, 

y(t) = 2(2000 − 5t) −  3900 (2000 − 5t)9 

Source: [Ukpebor et al. 2022] 

The following notations are used: 

✓ NM – New method 

✓ ES – Exact solution 

✓ CS - Computed solution 

✓ Error = Exact solution - Computed solution 

✓ EINM – Error in new method 

✓ CSINM - Computed solution in new method 

✓ CSIOKAAM(2021) - Computed solution in Ogunware, Kuboye, 

Abolarin And Mmaduakor (2021) 

✓ EIOKAAM(2021) - Error in Ogunware, Kuboye, Abolarin And 

Mmaduakor (2021) 

✓ CSIZAA(2016)- Computed solution in Zurni and Adeyeye (2016) 

✓ EIZAA(2016)- Error in Zurni and Adeyeye (2016) 

✓ CSIUAAA(2022) - Computed solution in Ukpebor, Adoghe and 

Airemen (2022) 

EIUAAA(2022) - Error in Ukpebor, Adoghe and Airemen (2022) 

Tables of Result and Comparison 

 

 

 

 

Table 1a: Showing the results from problem 1. 

x Exact Solution Computed Solution Error in new 

method 

0.10 0.90483741803595957

32 

0.904837418035956174

1 

3.3991E-15 

0.20 0.81873075307798185

87 

0.818730753077979279

3 

2.5794E-15 

0.30 0.74081822068171786

61 

0.740818220681715390

9 

2.4752E-15 

0.40 0.67032004603563930

07 

0.670320046035637126

0 

2.1747E-15 

0.50 0.60653065971263342

36 

0.606530659712631411

1 

2.0125E-15 

0.60 0.54881163609402643

26 

0.548811636094024656

4 

1.7762E-15 

0.70 0.49658530379140951

47 

0.496585303791407842

3 

1.6724E-15 

0.80 0.44932896411722159

14 

0.449328964117220220

8 

1.3706E-15 

0.90 0.40656965974059911

19 

0.406569659740597368

3 

1.7436E-15 

1.00 0.36787944117144232

16 

0.367879441171444216

8 

1.8952E-15 

 

Table 1b: Comparison of the computed result for solving problem 

1. 

X CSINM CSIOKAAM(2021) 

0.10 0.9048374180359561741 0.904837417996166460 

0.20 0.8187307530779792793 0.818730753005969650 

0.30 0.7408182206817153909 0.740818220583978950 

0.40 0.6703200460356371260 0.670320045917721980 

0.50 0.6065306597126314111 0.606530659579263440 

0.60 0.5488116360940246564 0.548811635949212780 

0.70 0.4965853037914078423 0.496585303638537760 

0.80 0.4493289641172202208 0.449328963959136910 

0.90 0.4065696597405973683 0.406569659579678110 

1.00 0.3678794411714442168 0.367879441009656470 

 

Table 1c. Comparison of error for solving problem 1. 

X EINM EIOKAAM (2021) 

0.10 3.3991E-15 3.979306E-11 

0.20 2.5794E-15 7.201217E-11 

0.30 2.4752E-15 9.773893E-11 

0.40 2.1747E-15 1.179173E-10 

0.50 2.0125E-15 1.333700E-10 

0.60 1.7762E-15 1.448137E-10 

0.70 1.6724E-15 1.528717E-10 

0.80 1.3706E-15 1.580846E-10 

0.90 1.7436E-15 1.609209E-10 

1.00 1.8952E-15 1.617858E-10 
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Table 2a: Showing the results from problem 2. 

X Exact Solution Computed 

Solution 

Error in 

new 

method 

0.10 0.52438528774964299

5454 

0.5243852877496429

96001 

5.47E-19 

0.20 0.54758129098202021

3418 

0.5475812909820202

13860 

4.42E-19 

0.30 0.56964601178747109

6386 

0.5696460117874710

96827 

4.41E-19 

0.40 0.59063462346100907

0665 

0.5906346234610090

71075 

4.10E-19 

0.50 0.61059960846429756

5878 

0.6105996084642975

66275 

3.97E-19 

0.60 0.62959088965914106

6966 

0.6295908896591410

67337 

3.71E-19 

0.70 0.64765595514064328

2822 

0.6476559551406432

83185 

3.63E-19 

0.80 0.66483997698218034

9628 

0.6648399769821803

49949 

3.21E-19 

0.90 0.68118592418911335

3428 

0.6811859241891133

53814 

3.86E-15 

1.00 0.69673467014368328

8198 

0.6967346701436832

88013 

1.85E-19 

 

Table 2b: Comparison of the computed result for solving problem 2. 

X CSINM CSIZAA(2016) 

0.10 0.5243852877496429960

01 

0.524385287749604728

04 

0.20 0.5475812909820202138

60 

0.547581290981945365

11 

0.30 0.5696460117874710968

27 

0.569646011787365272

69 

0.40 0.5906346234610090710

75 

0.590634623460873619

56 

0.50 0.6105996084642975662

75 

0.610599608464137390

10 

0.60 0.6295908896591410673

37 

0.629590889658957225

13 

0.70 0.6476559551406432831

85 

0.647655955140440057

88 

0.80 0.6648399769821803499

49 

0.664839976981958553

68 

0.90 0.6811859241891133538

14 

0.681185924188876723

20 

1.00 0.6967346701436832880

13 

0.696734670143432426

61 

 

 

 

 

Table 2c: Comparison of error for solving problem 2. 

x EINM EIZAA(2016) 

0.10 5.47E-19 3.826740E-14 

0.20 4.42E-19 7.484830E-14 

0.30 4.41E-19 1.058240E-13 

0.40 4.10E-19 1.354510E-13 

0.50 3.97E-19 1.601760E-13 

0.60 3.71E-19 1.838420E-13 

0.70 3.63E-19 2.032250E-13 

0.80 3.21E-19 2.217960E-13 

0.90 3.86E-19 2.366300E-13 

1.00 1.85E-19 2.508620E-13 

 

Table 3a: Showing the results from problem 3. 

X Exact Solution Computed Solution Error 

in new 

method 

0.10 107.76623011683094856 107.766230116830948553 7E-18 

0.20 115.51494091930285113 115.514940919302851132 2E-18 

0.30 123.24616305088452199 123.246163050884521986 4E-18 

0.40 130.95992710909107254 130.959927109091072540 0 

0.50 138.65626364554135351 138.656263645541353514 4E-18 

0.60 146.33520316601533958 146.335203166015339580 0 

0.70 153.99677613051145661 153.996776130511456612 2E-18 

0.80 161.64101295330385156 161.641012953303851562 2E-18 

0.90 169.26794400299960501 169.267944002999605009 1E-18 

 

Table 3b:Comparison of the computed result for solving problem 

3 

X CSINM CSIUAAA(2022) 

0.10 107.766230116830948553 107.76623011260318238 

0.20 115.514940919302851132 115.51494090305853318 

0.30 123.246163050884521986 123.24616302194271446 

0.40 130.959927109091072540 130.95992706677669876 

0.50 138.656263645541353514 138.65626358918532018 

0.60 146.335203166015339580 146.33520309495466018 

0.70 153.996776130511456612 153.99677604408937590 

0.80 161.641012953303851562 161.64101285086997114 

0.90 169.267944002999605009 169.26794388391000992 

1.00 176.877599602595886421 176.87759946621327280 

 

Table 3c: Comparison of error for solving problem 3 

X EINM EIUAAA(2022) 

0.10 7E-18 4.22776612E-09 

0.20 2E-18 1.624431802E-08 

0.30 4E-18 2.894180754E-08 

0.40 0 4.231437374E-08 

0.50 4E-18 5.635603322E-08 

0.60 0 7.106067932E-08 

0.70 2E-18 8.642208080E-08 

0.80 2E-18 1.0243388046E-07 

0.90 1E-18 1.1908959508E-07 

1.00 1E-18 1.3638261370E-07 
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Conclusion 

In this paper, we introduced a precise ten-step block technique for directly 

solving first-order differential equations numerically. This method was 

developed through multi-step collocation techniques such that an approximate 

power series was applied as a basis function. The interpolation of the basis 

function was done at xn+q, q = 0, while the collocation of the derivative of the 

basis function was done at xn+r , r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. These 

equations were solved using the Gaussian elimination method in order to find 

the unknown variables a’s, which were substituted into the basis function to 

give a continuous implicit scheme. This scheme was evaluated at βj (t), t = 0, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and the values obtained were substituted into the 

continuous scheme to give the discrete schemes. The order of the block method 

is eleven (11) and was also found to be zero stable. The method is consistent as 

the order of the method is greater than one, and it also converges. All 

computational work was done through computer programs formulated, 

ordered, and executed using the Maple Software application. The results 

obtained were compared to those from existing methods that addressed similar 

problems, revealing a favorable error correlation. As illustrated in Tables 1c, 

2c, and 3c, the new method demonstrates superior accuracy compared to 

existing methods, with reduced errors. Therefore, the new method is a highly 

accurate numerical solution for directly solving first-order ordinary differential 

equations. 
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