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ARTICLE DETAILS ABSTRACT 

This study focuses on developing an implicit continuous four-step method for the numerical solution 
of initial value problems (IVPs) stemming from ordinary differential equations(ODEs) of second-
order. A combination of polynomial and trigonometric basis functions serves as the backbone of this 
method. The derivation process employs interpolation and collocation techniques, facilitating a 
robust framework for solving IVPs. Through rigorous analysis employing pertinent theorems, the 
scheme’s consistency, convergence and stability were meticulously scrutinized. The findings of this 
investigation assert that the developed method exhibits consistency, zero-stability and consequently 
convergence, underlining its robustness and reliability in practical applications in comparison to 
existing literature in terms of accuracy, the proposed method outperforms the existing authors when 
the error are compared. In essence, this work represents a significant advancement in numerical 
methods for solving IVPs of second-order ODEs. The study provides a strong basis for future research 
in this area by utilizing a unique combination of polynomial with the sum of sine and cosine as the 
basis function and putting the approach through theoretical scrutiny. This opens up intriguing 
directions for further investigation and improvement. 
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Introduction  

This paper presents a numerical method for solving initial value problems 

(IVP) for general second-order ODEs of the form. 

 (1) 

Second-order linear differential equations find applications in 

various domains such as physics and engineering, offering a 

framework to model system of equations. In the realm of numerical 

integration, particularly for oscillatory problems, the exploration 

began in 1961 with Gautsci introducing the Adams and St¨ormer 

order using trigonometric polynomials. 

Higher order ODEs in ordinary differential equations were first 

reduced to a system of first-order ODEs, allowing for the application 

of any suitable method for solving first-order ODEs.Butcher 
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(2018),Fatunla (1991) and Awoyemi (2001) have studied the reduction 

procedure in great detail. 

Building upon Gautsci groundwork, Psihoyios and Simos (2003, 2005) 

introduced trigonometrically fitted schemes for solving oscillatory 

problems. These schemes, operating in predictor-corrector mode, 

employed the Adams-Bashforth method as the predictor and Adams-

Moulton as the corrector. However, their implementation posed 

challenges, requiring substantial human effort and often resulting in 

diminished accuracy because the predictor and corrector are usually of 

different orders. 

Addressing these limitations, Jator et. al. (2012) delved into multistep 

collocation methods to devise trigonometrically fitted approaches based 

on trigonometric polynomials, introducing Numerov type block methods. 

Ngwane and Jator (2020) expanded on this by developing a block hybrid 

scheme specifically tailored for integrating oscillatory problems. 

To overcome the drawbacks of the predictor-corrector method, 

researchers adopted the block method, which can begin computations 

without requiring previously computed values or additional initialization 

steps. Noteworthy contributors in this domain include Abolarin et. 

al.(2020), Omar and Kuboye (2018),Olanegan et. al. (2018) and Awoyemi 

et. al. (2015) among others. 

In this study, an approach involving a second derivative trigonometrically 

fitted method is presented, utilizing the multistep collocation technique. 

The approximated interpolating function is constructed as a linear 

combination of polynomials and trigonometric terms. Specifically, our 

proposed method is designed to precisely integrate initial value problems 

(IVPs) stated as combinations of the set 

. This basis function is 

chosen for its analytical simplicity and its ability to offer an enhanced 

framework for addressing initial value problems characterized by 

oscillatory solutions. The combination of these two functions will help to 

produce more accurate and stable results. 

Methodology 

In developing this method, the combination of polynomials with sine and 

cosine functions of the form 

 (2) 

is considered as an approximate solution to equation (1). Where the 

coefficients a s are arbitrary real constant that must be equally 

determined, the frequency of the trigonometric function ($) will be 

employed to enhance the method’s accuracy. 

The second derivative of equation (2) is obtained as: 

 (3) 

Collocating equation (3) at x = xn+j, j = 0(1)k and interpolating 

equation (2) at x = xn+j, j = 0,1 gives a seven non-singular equations 

which can be written as a system in matrix form in equation (4) 

 

(4) 

Then solving equation (4) using Gaussian elimination method with 

the help of Computer aided software gives values for the unknown 

parameters an(s) which gives our continuous implicit method when 

substituted into equation (2) 

 

 

(5) 

where αj(x)and βj(x) are continuous coefficients, yn+j = y(xn + jh) is the 

numerical approximation of the analytical solution at xn+jand

 

Using , equation (5) is evaluated at the non-

interpolating points xn+j;j = 2(1)k while the 

first derivative of Equation (5) is evaluated at all points, their 

coefficients and the corresponding Taylor series conversion up to 

O(u8) by letting u = $h are given as follows 

α0(t) = −(t − 1) 

α0(t) = −t     (6) 
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The result is expressed in series form as follows when evaluated at t = 2: 

   

(7) 

The result is expressed in series form as follows when evaluated at t = 3: 

  

(8) 

The result is expressed in series form as follows when evaluated at t = 4: 

   

(9) 

 

 

 

The block methods are derived by evaluating the first derivative 
ofEquation (5) in order to obtain additional equations needed to 
couple with (7), (8) and (9), which gives: 

 

 

(10) 

Evaluating the first derivative at all points, and the results are 

expressed in the series form 

 

  

(11) 

 

  

(12) 
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(13) 

   

(14) 

   

(15) 

Each of the coefficients in equations (7)-(9) is in trigonometric form. To 

avoid heavy cancellation that may occur as u → 0.  

Basic Properties of the Block Method 

Order and Error Constant 

The technique used by Enoch and Alakofa (2024) in finding the order of a 

method is also adopted in establishing the order of this new developed 

block method. With this, the proposed block method is of order p = 5 and 

error constants given by the vector 

 

Zero Stability of the Block 

Definition: A block method is said to be zero stable if as h → 0, the roots rj,j 

= 1(1)k of the first characteristic polynomials ρ(r) = 0 that is 

 

satisfying |R| ≤ 1, must be simple. ρ(z) = det[zA(0) − A(i) = 0] 

 

since | z = 1,0,0,0 |≤ 1. Therefore, the block method is zero stable 

Consistency 

Our new block method is consistent because its order is greater than 

1. 

Convergence 

Theorem 3.1: According to Lambert (1973), a linear multistep 

method is convergent if and only if it is both consistent and zero 

stable. Thus our block method is convergent since it is zero stable 

and consistent. 

Numerical Experiments 

This section examines the performance of the new method by 

applying it to some second order system of equations. The test 

problems outcomes are displayed in tabular form. 

Error= |exact solution − computed solution| 

Test Problem 1 

 

Theoretical Solution:    y1 = cosx, y2 = sinx  

source: Abdelrahim, R. & Omar, Z. (2016). 
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Table 1: Exact computed solutions of the new method for solving y1 in Test 

Problem 1 

X
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s
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y
1
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1
 

E
rr
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A
b

d
e

lr
a
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im
, 

R
. 

&
 O

m
a
r,

 Z
. 

(2
0
1
6
) 

 

0.1 0.995004165278

025710 

0.99500416542

4475890 

1.464501853E 

(-10) 

 

0.2 0.980066577841

241630 

0.98006657826

3853460 

4.226118344E 

(-10) 

4.208611E 

(-11) 

0.3 0.955336489125

605980 

0.95533648962

9699970 

5.040939888E 

(-10) 

- 

0.4 0.921060994002

885100 

0.92106099466

0191420 

6.573063205E 

(-10) 

2.945689E 

(-10) 

0.5 0.877582561890

372760 

0.87758256262

0329190 

7.299564286E 

(-10) 

- 

0.6 0.825335614909

678330 

0.82533561550

3742240 

5.940639092E 

(-10) 

7.596528E 

(-10) 

0.7 0.764842187284

488380 

0.76484218774

0586540 

4.560981592 

E(-10) 

- 

0.8 0.696706709347

165390 

0.69670670952

9967600 

1.828022178E 

(-10) 

1.178604E 

(-9) 

0.9 0.621609968270

664390 

0.62160996813

4783640 

1.358807511E 

(-10) 

- 

1.0 0.54030230586813

9770 

0.540302305363

824840 

5.043149232E 

(-10) 

1.180295E 

(-9) 

 

Table 2: Exact and computed solutions of the new method for solving y2 in 

Test Problem 1 
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E
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b
d

e
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a
h
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, R

. 

&
 O

m
a

r,
 Z

.  
(2

0
1

6
) 

 

0.1 0.099833416646828155 0.099833416645325856 1.502298286E 

(-12) 

 

0.2 0.198669330795061220 0.198669330823742910 2.868169591E 

(-11) 

3.186932E 

(-10) 

0.3 0.295520206661339550 0.295520206706007930 4.466838011E 

(-11) 

- 

0.4 0.389418342308650520 0.389418342373891950 6.524142337E 

(-11) 

1.082778E 

(-9) 

0.5 0.479425538604203010 0.479425538757451470 1.532484695E 

(-10) 

- 

0.6 0.564642473395035370 0.564642473646759350 2.517239750E 

(-10) 

1.773150E 

(-9) 

0.7 0.644217687237691130 0.644217687549621830 3.119307035E 

(-10) 

- 

0.8 0.717356090899522790 0.717356091224827240 3.253044500E 

(-10) 

1.862680E 

(-9) 

0.9 0.783326909627483410 0.783326909947776320 3.202929033E 

(-10) 

- 

1.0 0.841470984807896500 0.841470985119705190 3.118086900E 

(-10) 

1.081632E 

(-9) 
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Test Problem 2: (Periodic Problem) Vande Vyver 

 
= 0.

 

 

 

= 0.

 

 

Theoretical Solution: 

y1(x) = cos(x) + 0.0005xsin(x),  

y2(x) = sin(x) − 0.0005xcos(x). 

source: Kayode et. al (2021) 

 

Table 3: Exact nd computed solutions of the new method for solving 

y1 in Test Problem 2 

X
 

E
x

a
ct

 

C
o

m
p

u
te

d
 

E
rr

o
r 

in
 y

1
 

E
rr

o
r 

in
 K

a
y

o
d

e
  

e
t.

 
a

l 
 (

2
0

2
1

) 

  

0.001 

0
.9

9
9

9
9

9
5

0
0

5

0
0

0
4

2
 

0.999999500500042 0 4.98251761E 
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Table 4: Exact and computed solutions of the new method for 

solving y2 in Test Problem 2 
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0.008954879181453 4.049950129E 

(-05) 

4.05095821E 
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Discussion of Result and Conclusion 

The numerical results produced from the analyzed problems demonstrate 

high efficiency and effectiveness in their performance. From the results 

generated, it is worthy of note the favorable performance of the proposed 

method when compared with existing methods in the literature. Tables 1 

and 2 presents the computational solution of test problem 1 (systems of 

equation), the results compete favorably well with that of Abdelrahim and 

Omar (2016). in terms of errors. Also, Tables 3 and 4 shows the 

computational solution of test problem 2 (VandeVyver), the results 

outperform that of Kayode et. al (2021). Utilizing collocation and 

interpolation techniques, a new class of continuous second derivative 

block methods for solving ODEs is constructed. This innovative approach 

combines polynomial and trigonometric functions, implemented through 

code written in MATLAB, to develop an approximation solution. The 

resulting block techniques exhibit continuous coefficients and possess key 

properties of consistency, zero stability, and convergence. These 

characteristics contribute to a robust methodology that ensures reliability 

in solving ODEs, presenting a promising avenue for further exploration 

and application in this field  
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